

Alloy W is a solid solution strengthened nickel superalloy developed primarily as a filler metal for welding dissimilar alloys. Alloy W has excellent dissimilar welding characteristics, and is widely used for that purpose in the gas turbine, aerospace and chemical process industries. The properties of dissimilar weld joints made with alloy W are dependent upon the base metal being joined, but are generally acceptable for a wide range of combinations.

Specifications

UNS: N10004 AMS: 5786 AWS: A5.14, ERNiMo-3

Chemical Composition, %

	Cr	Ni+Co	Мо	Co*	۷	C	Fe	Mn	Si	Р	S
MIN	4.0	-	23.0	-	-	-	4.0	-	-	-	-
MAX	6.0	balance	26.0	2.5	0.6	0.12	7.0	1.0	1.0	0.04	0.03

* Determination not required for routine acceptance

Features

- One of the best choices for dissimilar alloy weldments
- Resists weld cracking in restrained joints of precipitation hardenable alloys
- Oxidation resistant through 1400°F
- Low coefficient of thermal expansion

Applications

- Joining crack sensitive precipitation hardening alloys
 Rings in gas turbine engines

Physical Properties

Density: 0.325 lb/in³ Melting Range: 2350-2510°F

· · /· · · · · · · · · · · · · · · · ·	- J	-				
Temperature, °F	800	1000	1200	1400	1600	1800
Coefficient* of Thermal Expansion, in/in°F x 10 ⁻⁶	7.3	7.4	7.4	7.8	8.2	8.4

* 70°F to indicated temperature.

Mechanical Properties

|--|

Temperature, °F	70	1000	1200	1400	1600	1800
Ultimate Tensile Strength, ksi	140	121	104	89	61	32
0.2% Yield Strength, ksi	76	54	53	56	49	24
Elongation, %	51	52.5	27	20.3	31.8	47.5

Typical Rupture Strength, Bar (AMS 5755)

Temperature, °F	1300	1400	1500	1600	1700
100 Hours, ksi	35	26	18	12	8
1,000 Hours, ksi	28	19	12	8	5

CLAUDIO CZARNOBAI

COMMERCIAL MANAGER ClaudioCzarnobai@intwinds.com **F** +55 11 3825 2966 C +55 11 99112 2703

ROLLED

Rolled Alloys, RA are registered trademarks of Rolled Alloys The data and information in this printed matter are believed to be reliable. However, this material is not intended as a substitute for competent professional engineering assistance which is a requisite to any specific application. Rolled Alloys makes no warranty and assumes no legal liability or responsibility for results to be obtained in any particular situation, and shall not be liable for any direct, indirect, special, or consequential damage therefrom. This material is subject to revision without prior notice. www.itwmetals.com.br Bulletin No. 264BZp 03/15