Alloy 625 is used both for its high strength and outstanding aqueous corrosion resistance. The strength of alloy 625 is primarily a solid solution effect from molybdenum and columbium. Alloy 625 weld fillers have excellent weldability and are frequently used to weld Al-6XN® super austenitic stainless steel. Matching filler metals are also used to join dissimilar metals.

#### **Specifications**

UNS: NO6625 W. Nr./EN: 2.4856 ASTM: B 443 Gr 1, B 446 Gr 1 AMS: 5599, 5666, 5837

**ASME:** SB-443 Gr 1, SB-446 Gr 1 **NACE:** MR0175-3 **ISO:** 15156-3

#### Chemical Composition, %

|     | Cr   | Ni      | Мо   | Со  | Cb+Ta | Al  | Ti  | C   | Fe  | Mn  | Si  | P     | S     |
|-----|------|---------|------|-----|-------|-----|-----|-----|-----|-----|-----|-------|-------|
| MIN | 20.0 | -       | 8.0  | -   | 3.15  | -   | 1   | _   | ı   | -   | -   | 1     | -     |
| MAX | 23.0 | balance | 10.0 | 1.0 | 4.15  | 0.4 | 0.4 | 0.1 | 5.0 | 0.5 | 0.5 | 0.015 | 0.015 |

#### **Features**

- High creep-rupture strength
- Oxidation resistant to 1800°F
- Good fatigue resistance
- Excellent weldability
- Outstanding resistance to chloride pitting and crevice corrosion
- Immune to chloride ion stress corrosion cracking
- Resistant to seawater under both flowing and stagnant conditions and under fouling

#### **Applications**

- Aircraft ducting systems
- Jet engine exhaust systems
- Engine thrust-reverser systems
- Bellows and expansion joints
- Turbine shroud rings
- Flare stacks
- Seawater components
- Chemical process equipment handling mixed acids both oxidizing and reducing.

## **Physical Properties**

| Density: 0.303 lb/ln <sup>3</sup> Meiting               | Poisson's Katio: 0.308 Electrical Resistivity: 7/5 onm • circ mil/ti |      |      |      |      |      |      |      |
|---------------------------------------------------------|----------------------------------------------------------------------|------|------|------|------|------|------|------|
| Temperature, °F                                         | 70                                                                   | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 |
| Coefficient* of Thermal Expansion, in/in°F x 10-6       | _                                                                    | 7.3  | 7.4  | 7.6  | 7.8  | 8.2  | 8.5  | 8.8  |
| Thermal Conductivity<br>Btu • ft/ft² • hr • °F          | 5.7                                                                  | 7.2  | 8.2  | 9.1  | 10.1 | 11.0 | 12.0 | 13.2 |
| Modulus of Elasticity Dynamic,<br>psi x 10 <sup>6</sup> | 29.8                                                                 | 28.4 | 27.5 | 26.6 | 25.6 | 24.4 | 23.1 | _    |

<sup>\* 70°</sup>F to indicated temperature.

www.itwmetals.com.br claudioczarnobai@intwinds.com +55 (11) 3825 2966

www.itwmetals.com.br claudioczarnobai@intwinds.com +55 (11) 3825 2966

## **Mechanical Properties**

## Representative Tensile Properties, Bar

| Temperature,°F                 | 70  | 400 | 600  | 800 | 1000 | 1200 | 1400 | 1600 |
|--------------------------------|-----|-----|------|-----|------|------|------|------|
| Ultimate Tensile Strength, ksi | 135 | 124 | 120  | 119 | 119  | 114  | 73   | 40   |
| 0.2% Yield Strength, ksi       | 65  | 45  | 42   | 42  | 42   | 42   | 41   | 39   |
| Elongation, %                  | 44  | 45  | 42.5 | 45  | 48   | 34   | 59   | 117  |

## Typical Rupture Strength Bar, Stress to Rupture at Indicated Time

| Temperature, °F   | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 |
|-------------------|------|------|------|------|------|------|------|
| 1,000 Hours, ksi  | 55   | 32   | 18   | 9.1  | 4.2  | 2.7  | 1.7  |
| 10,000 Hours, ksi | 43   | 23   | 12   | _    | _    | _    | _    |



# **CLAUDIO CZARNOBAI**

COMMERCIAL MANAGER ClaudioCzarnobai@intwinds.com

+55 11 3825 2966

C +55 11 99112 2703



